LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2015

MT 1818 - DIFFERENTIAL GEOMETRY

Date: 11/11/2015	Dept. No.	Max.: 100 Marks

Time: 01:00-04:00

Answer ALL the Questions:

1. a) Find the curvature and torsion of the curve $\vec{x} = (u, u^2, u^3)$. **(5)**

- b) For the curve $\vec{x} = (e^{-u}sinu, e^{-u}cosu, e^{-u})$. Find at any point u of the curve (i) unit tangent (ii) equation of the tangent (iii) equation of the normal plane.
- c) (i) Find the equation of the osculating plane at a point on the curve of the intersection of the cylinders $x^2 + z^2 = a^2$, $y^2 + z^2 = \hat{b}^2$.
 - (ii) Show that the tangent at a point of the curve of the intersection of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{y^2}{b^2}$

$$\frac{z^2}{c^2} = 1 \text{ and the confocal whose parameter is } \lambda \text{ is given by}$$

$$\frac{x(X-x)}{a^2(b^2-c^2)(a^2-\lambda)} = \frac{y(Y-y)}{b^2(c^2-a^2)(b^2-\lambda)} = \frac{z(Z-z)}{c^2(a^2-b^2)(c^2-\lambda)}.$$
(9 +6)

- d) (i) State and prove Serret-Frenet formula.
 - (ii) Use Serret-Frenet formula, to find an expression for curvature.

(10 + 5)

(5)

2. a) Find the lines that have four point contact at (0, 0, 1) with the surface $x^4 + 3xyz + x^2 - y^2 - z^2 + 2yz - 3xy - 2y + 2z = 1$.

$$x^{4} + 3xyz + x^{2} - y^{2} - z^{2} + 2yz - 3xy - 2y + 2z = 1.$$
 (5)

- b) Find the necessary and sufficient condition that a curve to be a helix.
- c) Find the equations of the curve whose curvature and torsion are constants. (15)

d) Derive the equation of evolute of a curve. Also find the curvature and torsion of an evolute. (15)

3.	a) Show that the envelope of the plane that forms with the coordinate planes a tetrahe constant volume.	edron of (5)		
	OR			
	b) Give the quadratic form of first fundamental form. Also calculate the fundamental for the surface of revolution.	(5)		
	c) Prove that the necessary and sufficient condition for the surface may be developable Gaussian surface is zero.	ole is that its (15)		
	OR			
	d) Find the edge of regression of the developable surface that passes through the para $z^2 = 4ay$, $x = 0$; $y^2 = 4az$, $x = a$.	abolas (15)		
4.	a) State and prove Meusnier's theorem.	(5)		
	OR			
	b) Prove that the ratio of the second fundamental form to the first fundamental form curvature of the surface.	is the normal (5)		
	c) (i) Show that the Dupin indicatrix at every point of the right helicoids is a rectangular hyperbola.			
	(ii) Find the principal curvature of the coincoid $x = u\cos\theta$, $y = u\sin\theta$, $z = f(\theta)$.			
		(6 + 9)		
	OR			
) (i) Define geodesic on a surface. Prove that the curves $u + v = \text{constant}$ are geodesic on a surface with metric $(1 + u^2)du^2 - 2uvdudv + (1 + u^2)dv^2$.			
	(ii) Find the differential equation of lines of curvature through a point on the surfa	ce		
	z = f(x, y).	(9 + 6)		
5.	a) Prove that the Gaussian curvature of a surface is a bending invariant. OR	(5)		
	b) Derive Weingarten's equations.	(5)		
	c) Derive the equations of Gauss. OR	(15)		
	d) (i) Prove that the sphere is the only surface in which all points are umbilics.			
	(ii) If κ_1 and κ_2 are the principal normal curvatures, derive Codazzi equations.	(8 + 7)		
